Sum Rate Maximization for Regularized Zero-Forcing Precoder in 1-Bit MIMO

Ferhad Askerbeyli, Wen Xu, Josef A. Nossek

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Many linear and nonlinear precoding techniques have been proposed to tackle the quantization distortions in the multiple-input-multiple-output (MIMO) downlink system deployed with 1-bit digital-to-analog converters (DACs). Very few of these techniques can support adequate sum rates in a realistic scenario with channel strength imbalances between the users. Higher sum rates can be achieved through a power allocation scheme which takes the 1-bit quantization distortions into account. In this paper, we propose a quantization aware sum rate maximizing power allocation algorithm for the regularized zero-forcing (RZF) precoder based on the asymptotic analysis. Numerical results illustrate that the proposed method achieves higher sum rates than the other state-of-the-art quantization aware sum rate maximization schemes.

OriginalspracheEnglisch
Titel2023 IEEE 98th Vehicular Technology Conference, VTC 2023-Fall - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350329285
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung98th IEEE Vehicular Technology Conference, VTC 2023-Fall - Hong Kong, China
Dauer: 10 Okt. 202313 Okt. 2023

Publikationsreihe

NameIEEE Vehicular Technology Conference
ISSN (Print)1550-2252

Konferenz

Konferenz98th IEEE Vehicular Technology Conference, VTC 2023-Fall
Land/GebietChina
OrtHong Kong
Zeitraum10/10/2313/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sum Rate Maximization for Regularized Zero-Forcing Precoder in 1-Bit MIMO“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren