Sub-Millimetric Fiducial Localization for Intralogistics Robotics

Daniel Vidal, Johannes Fottner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This study presents a novel approach to achieve sub-millimetric localization in intralogistic robotic applications by combining the simplicity of ArUco code detection with the enhanced accuracy of pose estimation using a structured light 3D camera. By evaluating the point cloud generated by the depth camera, the cartesian pose of the ArUco code can be directly extracted, eliminating the need for prior knowledge about camera intrinsics or calibration. This method enhances the accuracy of relative robot localization within warehouse environments up to 0.1 mm at a 1 m distance. To the best of our knowledge, this accuracy has not been reported in any previous work in the literature.

OriginalspracheEnglisch
Titel2024 32nd Mediterranean Conference on Control and Automation, MED 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten584-589
Seitenumfang6
ISBN (elektronisch)9798350395440
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung32nd Mediterranean Conference on Control and Automation, MED 2024 - Chania, Crete, Griechenland
Dauer: 11 Juni 202414 Juni 2024

Publikationsreihe

Name2024 32nd Mediterranean Conference on Control and Automation, MED 2024

Konferenz

Konferenz32nd Mediterranean Conference on Control and Automation, MED 2024
Land/GebietGriechenland
OrtChania, Crete
Zeitraum11/06/2414/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sub-Millimetric Fiducial Localization for Intralogistics Robotics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren