Strong divergence for system approximations

H. Boche, U. J. Mönich

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

In this paper we analyze approximation of stable linear time-invariant systems, like the Hilbert transform, by sampling series for bandlimited functions in the Paley–Wiener space PWπ 1. It is known that there exist systems and functions such that the approximation process is weakly divergent, i.e., divergent for certain subsequences. Here we strengthen this result by proving strong divergence, i.e., divergence for all subsequences. Further, in case of divergence, we give the divergence speed. We consider sampling at Nyquist rate as well as oversampling with adaptive choice of the kernel. Finally, connections between strong divergence and the Banach–Steinhaus theorem, which is not powerful enough to prove strong divergence, are discussed.

OriginalspracheEnglisch
Seiten (von - bis)240-266
Seitenumfang27
FachzeitschriftProblems of Information Transmission
Jahrgang51
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Strong divergence for system approximations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren