Strip Attention for Image Restoration

Yuning Cui, Yi Tao, Luoxi Jing, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

As a long-standing task, image restoration aims to recover the latent sharp image from its degraded counterpart. In recent years, owing to the strong ability of self-attention in capturing long-range dependencies, Transformer based methods have achieved promising performance on multifarious image restoration tasks. However, the canonical self-attention leads to quadratic complexity with respect to input size, hindering its further applications in image restoration. In this paper, we propose a Strip Attention Network (SANet) for image restoration to integrate information in a more efficient and effective manner. Specifically, a strip attention unit is proposed to harvest the contextual information for each pixel from its adjacent pixels in the same row or column. By employing this operation in different directions, each location can perceive information from an expanded region. Furthermore, we apply various receptive fields in different feature groups to enhance representation learning. Incorporating these designs into a U-shaped backbone, our SANet performs favorably against state-of-the-art algorithms on several image restoration tasks. The code is available at https://github.com/c-yn/SANet.

OriginalspracheEnglisch
TitelProceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Redakteure/-innenEdith Elkind
Herausgeber (Verlag)International Joint Conferences on Artificial Intelligence
Seiten645-653
Seitenumfang9
ISBN (elektronisch)9781956792034
PublikationsstatusVeröffentlicht - 2023
Veranstaltung32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China
Dauer: 19 Aug. 202325 Aug. 2023

Publikationsreihe

NameIJCAI International Joint Conference on Artificial Intelligence
Band2023-August
ISSN (Print)1045-0823

Konferenz

Konferenz32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Land/GebietChina
OrtMacao
Zeitraum19/08/2325/08/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Strip Attention for Image Restoration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren