Stock Market Crisis Forecasting Using Neural Networks with Input Factor Selection

Felix Fuchs, Markus Wahl, Rudi Zagst, Xinyi Zheng

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

Artificial neural networks have gained increasing importance in many fields, including quantitative finance, due to their ability to identify, learn and regenerate non-linear relationships between targets of investigation. We explore the potential of artificial neural networks in forecasting financial crises with micro-, macroeconomic and financial factors. In this application of neural networks, a huge amount of available input factors, but limited historical data, often leads to over-parameterized and unstable models. Therefore, we develop an input variable reduction method for model selection. With an iterative walk-forward forecasting and testing procedure, we create out-of-sample predictions for crisis periods of the S&P 500 and demonstrate that the model selected with our method outperforms a model with a set of input factors taken from the literature.

OriginalspracheEnglisch
Aufsatznummer1952
FachzeitschriftApplied Sciences (Switzerland)
Jahrgang12
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Stock Market Crisis Forecasting Using Neural Networks with Input Factor Selection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren