Steady-State Error Reduction of Reinforcement Learning based Indirect Current Control of Permanent Magnet Synchronous Machines

Tobias Schindler, Lara Broghammer, Dennis Hufnagel, Nina Diringer, Benedikt Hofmann, Armin Dietz, Petros Karamanakos, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Deep reinforcement learning (DRL) can achieve favorable dynamic performance compared to conventional control methods. However, steady-state errors are often present. This paper investigates the reduction of steady-state error in DRL-based current control of permanent magnet synchronous machines (PMSMs) by augmenting the integrated tracking error to the observation vector. More specifically, this paper assesses the performance of a DRL-based method under nominal and adverse operating conditions by considering PMSMs with linear and nonlinear magnetic circuits, which exhibit saturation, cross-coupling, and spatial harmonics. The latter include parameter mismatches between the training model and the physical system and misalignment of the dq-frame with respect to the identified position of the d-axis. As shown with the presented experimental results, the DRL-based control method can successfully operate the drive system under all operating conditions, with the steady-state and dynamic performance being similar to that of field-oriented control.

OriginalspracheEnglisch
TitelInternational Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024
Herausgeber (Verlag)Mesago PCIM GmbH
Seiten140-149
Seitenumfang10
ISBN (elektronisch)9783800762620
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024 - Nuremberg, Deutschland
Dauer: 11 Juni 202413 Juni 2024

Publikationsreihe

NamePCIM Europe Conference Proceedings
Band2024-June
ISSN (elektronisch)2191-3358

Konferenz

Konferenz2024 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024
Land/GebietDeutschland
OrtNuremberg
Zeitraum11/06/2413/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Steady-State Error Reduction of Reinforcement Learning based Indirect Current Control of Permanent Magnet Synchronous Machines“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren