Statistical unbiased background modeling for moving platforms

Michael Kirchhof, Uwe Stilla

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Statistical background modeling is a standard technique for the detection of moving objects in a static scene. Nevertheless, the stateof-the-art approaches have several lacks for short sequences or quasistationary scenes. Quasi-static means that the ego-motion of the sensor is compensated by image processing. Our focus of attention goes back to the modeling of the pixel process, as it was introduced by Stauffer and Grimson. For quasi-stationary scenes the assignment of a pixel to an origin is uncertain. This assignment is an independent random process that contributes to the gray value. Since the typical update schemes are biased we introduce a novel update scheme based on the join mean and join variance of two independent distributions. The presented method can be seen as an update for the initial guess for more sophisticated algorithms that optimize the spatial distribution.

OriginalspracheEnglisch
TitelPhotogrammetric Image Analysis, ISPRS Conference, PIA 2011, Proceedings
Seiten245-256
Seitenumfang12
DOIs
PublikationsstatusVeröffentlicht - 2011
Extern publiziertJa
VeranstaltungISPRS Conference on Photogrammetric Image Analysis, PIA 2011 - Munich, Deutschland
Dauer: 5 Okt. 20117 Okt. 2011

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band6952 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzISPRS Conference on Photogrammetric Image Analysis, PIA 2011
Land/GebietDeutschland
OrtMunich
Zeitraum5/10/117/10/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Statistical unbiased background modeling for moving platforms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren