Static and dynamic modelling for the recognition of non-verbal vocalisations in conversational speech

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

41 Zitate (Scopus)

Abstract

Non-verbal vocalisations such as laughter, breathing, hesitation, and consent play an important role in the recognition and understanding of human conversational speech and spontaneous affect. In this contribution we discuss two different strategies for robust discrimination of such events: dynamic modelling by a broad selection of diverse acoustic Low-Level-Descriptors vs. static modelling by projection of these via statistical functionals onto a 0.6k feature space with subsequent de-correlation. As classifiers we employ Hidden Markov Models, Conditional Random Fields, and Support Vector Machines, respectively. For discussion of extensive parameter optimisation test-runs with respect to features and model topology, 2.9k non-verbals are extracted from the spontaneous Audio-Visual Interest Corpus. 80.7% accuracy can be reported with, and 92.6% without a garbage model for the discrimination of the named classes.

OriginalspracheEnglisch
TitelPerception in Multimodal Dialogue Systems - 4th IEEE Tutorial and Research Workshop on Perception and Interactive Technologies for Speech-Based Systems, PIT 2008, Proceedings
Seiten99-110
Seitenumfang12
DOIs
PublikationsstatusVeröffentlicht - 2008
Veranstaltung4th IEEE Tutorial and Research Workshop on Perception and Interactive Technologies for Multimodal Dialogue Systems, PIT 2008 - Kloster Irsee, Deutschland
Dauer: 16 Juni 200818 Juni 2008

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band5078 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz4th IEEE Tutorial and Research Workshop on Perception and Interactive Technologies for Multimodal Dialogue Systems, PIT 2008
Land/GebietDeutschland
OrtKloster Irsee
Zeitraum16/06/0818/06/08

Fingerprint

Untersuchen Sie die Forschungsthemen von „Static and dynamic modelling for the recognition of non-verbal vocalisations in conversational speech“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren