Spline- and hp-basis functions of higher differentiability in the finite cell method

Stefan Kollmannsberger, Davide D'Angella, Ernst Rank, Wadhah Garhuom, Simeon Hubrich, Alexander Düster, Paolo Di Stolfo, Andreas Schröder

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

In this paper, the use of hp-basis functions with higher differentiability properties is discussed in the context of the finite cell method and numerical simulations on complex geometries. For this purpose, Ck hp-basis functions based on classical B-splines and a new approach for the construction of C1 hp-basis functions with minimal local support are introduced. Both approaches allow for hanging nodes, whereas the new C1 approach also includes varying polynomial degrees. The properties of the hp-basis functions are studied in several numerical experiments, in which a linear elastic problem with some singularities is discretized with adaptive refinements. Furthermore, the application of the Ck hp-basis functions based on B-splines is investigated in the context of nonlinear material models, namely hyperelasticity and elastoplasicity with finite strains.

OriginalspracheEnglisch
Aufsatznummere202000004
FachzeitschriftGAMM Mitteilungen
Jahrgang43
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 März 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spline- and hp-basis functions of higher differentiability in the finite cell method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren