Speeding up HOG and LBP features for pedestrian detection by multiresolution techniques

Philip Geismann, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

In this article, we present a fast pedestrian detection system for driving assistance. We use current state-of-the-art HOG and LBP features and combine them into a set of powerful classifiers. We propose an encoding scheme that enables LBP to be used efficiently with the integral image approach. This way, HOG and LBP block features can be computed in constant time, regardless of block position or scale. To further speed up the detection process, a coarse-to-fine scanning strategy based on input resolution is employed. The original camera resolution is consecutively downsampled and fed to different stage classifiers. Early stages in low resolutions reject most of the negative candidate regions, while few samples are passed through all stages and are evaluated by more complex features. Results presented on the INRIA set show competetive accuracy performance, while both processing and training time of our system outperforms current state-of-the-art work.

OriginalspracheEnglisch
TitelAdvances in Visual Computing - 6th International Symposium, ISVC 2010, Proceedings
Seiten243-252
Seitenumfang10
AuflagePART 1
DOIs
PublikationsstatusVeröffentlicht - 2010
Veranstaltung6th International, Symposium on Visual Computing, ISVC 2010 - Las Vegas, NV, USA/Vereinigte Staaten
Dauer: 29 Nov. 20101 Dez. 2010

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band6453 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz6th International, Symposium on Visual Computing, ISVC 2010
Land/GebietUSA/Vereinigte Staaten
OrtLas Vegas, NV
Zeitraum29/11/101/12/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Speeding up HOG and LBP features for pedestrian detection by multiresolution techniques“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren