Abstract
In this paper we study the numerical passage from the spatially homogeneous Boltzmann equation without cut-off to the Fokker-Planck-Landau equation in the so-called grazing collision limit. To this aim we derive a Fourier spectral method for the non cut-off Boltzmann equation in the spirit of [21, 23]. We show that the kernel modes that define the spectral method have the correct grazing collision limit providing a consistent spectral method for the limiting Fokker-Planck-Landau equation. In particular, for small values of the scattering angle, we derive an approximate formula for the kernel modes of the non cut-off Boltzmann equation which, similarly to the Fokker-Planck-Landau case, can be computed with a fast algorithm. The uniform spectral accuracy of the method with respect to the grazing collision parameter is also proved.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 527-548 |
Seitenumfang | 22 |
Fachzeitschrift | Numerische Mathematik |
Jahrgang | 93 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - Jan. 2003 |
Extern publiziert | Ja |