Abstract
This paper discusses the use of absolutely one-homogeneous regularization functionals in a variational, scale space, and inverse scale space setting to define a nonlinear spectral decomposition of input data. We present several theoretical results that explain the relation between the different definitions. Additionally, results on the orthogonality of the decomposition, a Parseval-type identity, and the notion of generalized (nonlinear) eigenvectors closely link our nonlinear multiscale decompositions to the well-known linear filtering theory. Numerical results are used to illustrate our findings.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1374-1408 |
Seitenumfang | 35 |
Fachzeitschrift | SIAM Journal on Imaging Sciences |
Jahrgang | 9 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - 8 Sept. 2016 |