Spectral decompositions using one-homogeneous functionals

Martin Burger, Guy Gilboa, Michael Moeller, Lina Eckardt, Daniel Cremers

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

55 Zitate (Scopus)

Abstract

This paper discusses the use of absolutely one-homogeneous regularization functionals in a variational, scale space, and inverse scale space setting to define a nonlinear spectral decomposition of input data. We present several theoretical results that explain the relation between the different definitions. Additionally, results on the orthogonality of the decomposition, a Parseval-type identity, and the notion of generalized (nonlinear) eigenvectors closely link our nonlinear multiscale decompositions to the well-known linear filtering theory. Numerical results are used to illustrate our findings.

OriginalspracheEnglisch
Seiten (von - bis)1374-1408
Seitenumfang35
FachzeitschriftSIAM Journal on Imaging Sciences
Jahrgang9
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 8 Sept. 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spectral decompositions using one-homogeneous functionals“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren