Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials

Georgi D. Raikov, Simone Warzel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Abstract

We consider the Schrödinger operator H(V) on L2(ℝ2) or L2(ℝ3) with constant magnetic field, and a class of electric potentials V which typically decay at infinity exponentially fast or have a compact support. We investigate the asymptotic behaviour of the discrete spectrum of H(V) near the boundary points of its essential spectrum. If V decays like a Gaussian or faster, this behaviour is non-classical in the sense that it is not described by the quasi-classical formulas known for the case where V admits a power-like decay.

Titel in ÜbersetzungSpectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials
OriginalspracheEnglisch
Seiten (von - bis)683-688
Seitenumfang6
FachzeitschriftComptes Rendus Mathematique
Jahrgang335
Ausgabenummer8
DOIs
PublikationsstatusVeröffentlicht - 15 Okt. 2002
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren