Spatially adaptive spectral denoising for MR spectroscopic imaging using frequency-phase non-local means

Dhritiman Das, Eduardo Coello, Rolf F. Schulte, Bjoern H. Menze

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Magnetic resonance spectroscopic imaging (MRSI) is an imaging modality used for generating metabolic maps of the tissue invivo. These maps show the concentration of metabolites in the sample being investigated and their accurate quantification is important to diagnose diseases. However,the major roadblocks in accurate metabolite quantification are: low spatial resolution,long scanning times,poor signal-to-noise ratio (SNR) and the subsequent noise-sensitive non-linear model fitting. In this work,we propose a frequency-phase spectral denoising method based on the concept of non-local means (NLM) that improves the robustness of data analysis and scanning times while potentially increasing spatial resolution. We evaluate our method on simulated data sets as well as on human in-vivo MRSI data. Our denoising method improves the SNR while maintaining the spatial resolution of the spectra.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
Redakteure/-innenLeo Joskowicz, Mert R. Sabuncu, William Wells, Gozde Unal, Sebastian Ourselin
Herausgeber (Verlag)Springer Verlag
Seiten596-604
Seitenumfang9
ISBN (Print)9783319467252
DOIs
PublikationsstatusVeröffentlicht - 2016

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9902 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spatially adaptive spectral denoising for MR spectroscopic imaging using frequency-phase non-local means“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren