Sparse representation-based archetypal graphs for spectral clustering

Ribana Roscher, Lukas, Drees, Susanne Wenzel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We propose sparse representation-based archetypal graphs as input to spectral clustering for anomaly and change detection. The graph consists of vertices defined by data samples and edges which weights are determines by sparse representation. Besides relationships between all data samples, the graph also encodes the relationship to extremal points, so-called archetypes, which leads to an easily interpretable clustering result. We compare our approach to k-means clustering performed on the original feature representation and to k-means clustering performed on the sparse representation activations. Experiments show that our approach is able to deliver accurate and interpretable results for anomaly and change detection.

OriginalspracheEnglisch
Titel2017 IEEE International Geoscience and Remote Sensing Symposium
UntertitelInternational Cooperation for Global Awareness, IGARSS 2017 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2203-2206
Seitenumfang4
ISBN (elektronisch)9781509049516
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2017
Extern publiziertJa
Veranstaltung37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017 - Fort Worth, USA/Vereinigte Staaten
Dauer: 23 Juli 201728 Juli 2017

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2017-July

Konferenz

Konferenz37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017
Land/GebietUSA/Vereinigte Staaten
OrtFort Worth
Zeitraum23/07/1728/07/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sparse representation-based archetypal graphs for spectral clustering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren