Sparse Power Factorization with Refined Peakiness Conditions

Dominik Stoger, Jakob Geppert, Felix Krahmer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Many important signal processing tasks, like blind deconvolution and self-calibration, can be modeled as a bilinear inverse problem, meaning that the observation y depends Iinearly on two unknown vectors u and v. In many of these problems, at least one of the input vectors can be assumed to be sparse, i.e., to have only few non-zero entries. Sparse Power Factorization (SPF), proposed by Lee, Wu, and Bresler, aims to tackle this problem. Under the assumption that the measurements are random, they established recovery guarantees for signals with a significant portion of the mass concentrated in a single entry at a sampling rate, which scales with the intrinsic dimension of the signals. In this note we extend these recovery guarantees to a broader and more realistic class of signals, at the cost of a slightly increased number of measurements. Namely, we require that a significant portion of the mass is concentrated in a small set of entries (rather than just one entry).

OriginalspracheEnglisch
Titel2018 IEEE Statistical Signal Processing Workshop, SSP 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten423-427
Seitenumfang5
ISBN (Print)9781538615706
DOIs
PublikationsstatusVeröffentlicht - 29 Aug. 2018
Veranstaltung20th IEEE Statistical Signal Processing Workshop, SSP 2018 - Freiburg im Breisgau, Deutschland
Dauer: 10 Juni 201813 Juni 2018

Publikationsreihe

Name2018 IEEE Statistical Signal Processing Workshop, SSP 2018

Konferenz

Konferenz20th IEEE Statistical Signal Processing Workshop, SSP 2018
Land/GebietDeutschland
OrtFreiburg im Breisgau
Zeitraum10/06/1813/06/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sparse Power Factorization with Refined Peakiness Conditions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren