Sparse control of alignment models in high dimension

Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

8 Zitate (Scopus)

Abstract

For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming condence. In this paper we present an instance of this general statement tailored to the sparse control of models of consensus emergence in high dimension, projected to lower dimensions by means of random linear maps. We show that one can steer, nearly optimally and with high probability, a highdimensional alignment model to consensus by acting at each switching time on one agent of the system only, with a control rule chosen essentially exclusively according to information gathered from a randomly drawn low-dimensional representation of the control system.

OriginalspracheEnglisch
Seiten (von - bis)647-697
Seitenumfang51
FachzeitschriftNetworks and Heterogeneous Media
Jahrgang10
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sparse control of alignment models in high dimension“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren