Solving dynamic contact problems with local refinement in space and time

Corinna Hager, Patrice Hauret, Patrick Le Tallec, Barbara I. Wohlmuth

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

Frictional dynamic contact problems with complex geometries are a challenging task - from the computational as well as from the analytical point of view - since they generally involve space and time multi-scale aspects.To be able to reduce the complexity of this kind of contact problem, we employ a non-conforming domain decomposition method in space, consisting of a coarse global mesh not resolving the local structure and an overlapping fine patch for the contact computation. This leads to several benefits: First, we resolve the details of the surface only where it is needed, i.e., in the vicinity of the actual contact zone. Second, the subproblems can be discretized independently of each other which enables us to choose a much finer time scale on the contact zone than on the coarse domain. Here, we propose a set of interface conditions that yield optimal a priori error estimates on the fine-meshed subdomain without any artificial dissipation. Further, we develop an efficient iterative solution scheme for the coupled problem that is robust with respect to jumps in the material parameters. Several complex numerical examples illustrate the performance of the new scheme.

OriginalspracheEnglisch
Seiten (von - bis)25-41
Seitenumfang17
FachzeitschriftComputer Methods in Applied Mechanics and Engineering
Jahrgang201-204
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2012

Fingerprint

Untersuchen Sie die Forschungsthemen von „Solving dynamic contact problems with local refinement in space and time“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren