Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory

G. Friesecke, R. L. Pego

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

87 Zitate (Scopus)

Abstract

Parts II, III and IV of this series are devoted to proving long time stability of solitary waves in one-dimensional nonintegrable lattices with Hamiltonian H = Σj∈ℤ (1/2pj2 + V (qj+1 - qj)), with a general nearest-neighbour potential V. Here in part III we analyse the evolution equation obtained by linearizing the dynamics at a solitary wave. This equation is nonautonomous, because discrete solitary waves are not time-independent modulo a spatial shift (like their continuous counterparts), but time-periodic modulo a spatial shift. We develop a Floquet theory modulo shifts on the lattice that naturally characterizes the time-t evolution on the lattice in terms of a strongly continuous group of operators on the real line, in a manner reminiscent of Howland's treatment of quantum scattering with time-periodic potentials. This allows us to reduce the main hypothesis of our nonlinear stability theorem in part II (namely, exponential decay in the linearized dynamics on the symplectic complement to the solitary-wave manifold) to an eigenvalue condition on the generator of the group, which is a differential-difference operator on the real line. Physically, the eigenvalue condition means that no spatially localized modes of constant shape exist which travel at the solitary wave speed and have exponentially growing or neutral amplitude.

OriginalspracheEnglisch
Seiten (von - bis)207-227
Seitenumfang21
FachzeitschriftNonlinearity
Jahrgang17
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2004
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren