Soft Robot Shape Estimation With IMUs Leveraging PCC Kinematics for Drift Filtering

Francesco Stella, Cosimo Della Santina, Josie Hughes

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter proposes a method to eliminate this limitation by leveraging the Piecewise Constant Curvature model assumption. We validate the reconstruction capabilities of the algorithm in simulation and experimentally. To this end, we also present a novel large-scale, foam-based manipulator with embedded IMU sensors. Using the filter, we bring the accuracy in IMU-based reconstruction algorithms to 93% of the soft robot's length and enable substantially longer measurements than the baseline. We also show that the proposed technique generates reliable estimations for closed-loop control of the robot's shape.

OriginalspracheEnglisch
Seiten (von - bis)1945-1952
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang9
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2024
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Soft Robot Shape Estimation With IMUs Leveraging PCC Kinematics for Drift Filtering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren