Soft dimension reduction for ICA by joint diagonalization on the stiefel manifold

Fabian J. Theis, Thomas P. Cason, P-AAbsil

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

35 Zitate (Scopus)

Abstract

Joint diagonalization for ICA is often performed on the orthogonal group after a pre-whitening step. Here we assume that we only want to extract a few sources after pre-whitening, and hence work on the Stiefel manifold of p-frames in Rn. The resulting method does not only use second-order statistics to estimate the dimension reduction and is therefore denoted as soft dimension reduction. We employ a trust- region method for minimizing the cost function on the Stiefel manifold. Applications to a toy example and functional MRI data show a higher numerical efficiency, especially when p is much smaller than n,and more robust performance in the presence of strong noise than methods based on pre-whitening.

OriginalspracheEnglisch
Seiten (von - bis)354-361
Seitenumfang8
FachzeitschriftLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Jahrgang5441
DOIs
PublikationsstatusVeröffentlicht - 2009
Extern publiziertJa
Veranstaltung8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009 - Paraty, Brasilien
Dauer: 15 März 200918 März 2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „Soft dimension reduction for ICA by joint diagonalization on the stiefel manifold“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren