Snore sound recognition: On wavelets and classifiers from deep nets to kernels

Kun Qian, Christoph Janott, Jun Deng, Clemens Heiser, Winfried Hohenhorst, Michael Herzog, Nicholas Cummins, Bjorn Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

In this paper, we present a comprehensive comparison of wavelet features for the classification of snore sounds. Wavelet features have proven to be efficient in our previous work; however, the benefits of wavelet transform energy (WTE) and wavelet packet transform energy (WPTE) features were not clearly established. In this study, we firstly present our updated snore sounds database, expanded from 24 patients (collected by one medical centre) to 40 patients (collected by three medical centres). We then study the effects of varying frame sizes and overlaps for extraction of the wavelet low-level descriptors, the effect of which have yet to be fully established. We also compare the performance of the WTE and WPTE features when fed into multiple classifiers, namely, Support Vector Machines (SVM), K-Nearest Neighbours, Linear Discriminant Analysis, Random Forests, Extreme Learning Machines, Kernel Extreme Learning Machines, Multilayer Perceptron, and Deep Neural Networks. Key results presented indicate that, when fed into a SVM, WTE outperforms WPTE (one-tailed z-test, p<0.002). Further, WPTE can achieve a significant improvement when trained by a k-nearest neighbours classifier (one-tailed z-test, p < 0.001).

OriginalspracheEnglisch
Titel2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
UntertitelSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3737-3740
Seitenumfang4
ISBN (elektronisch)9781509028092
DOIs
PublikationsstatusVeröffentlicht - 13 Sept. 2017
Veranstaltung39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Südkorea
Dauer: 11 Juli 201715 Juli 2017

Publikationsreihe

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Konferenz

Konferenz39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
Land/GebietSüdkorea
OrtJeju Island
Zeitraum11/07/1715/07/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Snore sound recognition: On wavelets and classifiers from deep nets to kernels“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren