Smart Forgetting for Safe Online Learning with Gaussian Processes

Jonas Umlauft, Thomas Beckers, Alexandre Capone, Armin Lederer, Sandra Hirche

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

9 Zitate (Scopus)

Abstract

The identification of unknown dynamical systems using supervised learning enables model-based control of systems that cannot be modeled based on first principles. While most control literature focuses on the analysis of a static dataset, online learning control, where data points are added while the controller is running, has rarely been studied in depth. In this paper, we present a data-efficient approach for online learning control based on Gaussian process models. To enable real-time capability despite high computational loads with growing datasets, we propose a safe forgetting mechanism. Using an entropy criterion, data points are selected based on their utility for the future trajectory under consideration of the stability of the closed-loop system. The approach is evaluated in a simulation and in a robotic experiment to demonstrate its computational efficiency.

OriginalspracheEnglisch
Seiten (von - bis)160-169
Seitenumfang10
FachzeitschriftProceedings of Machine Learning Research
Jahrgang120
PublikationsstatusVeröffentlicht - 2020
Veranstaltung2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020 - Berkeley, USA/Vereinigte Staaten
Dauer: 10 Juni 202011 Juni 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Smart Forgetting for Safe Online Learning with Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren