Small-Footprint Keyword Spotting on Raw Audio Data with Sinc-Convolutions

Simon Mittermaier, Ludwig Kurzinger, Bernd Waschneck, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

49 Zitate (Scopus)

Abstract

Keyword Spotting (KWS) enables speech-based user interaction on smart devices. Always-on and battery-powered application scenarios for smart devices put constraints on hardware resources and power consumption, while also demanding high accuracy as well as real-time capability. Previous architectures first extracted acoustic features and then applied a neural network to classify keyword probabilities, optimizing towards memory footprint and execution time.Compared to previous publications, we took additional steps to reduce power and memory consumption without reducing classification accuracy. Power-consuming audio preprocessing and data transfer steps are eliminated by directly classifying from raw audio. For this, our end-to-end architecture extracts spectral features using parametrized Sinc-convolutions. Its memory footprint is further reduced by grouping depthwise separable convolutions. Our network achieves the competitive accuracy of 96.4% on Google's Speech Commands test set with only 62k parameters.

OriginalspracheEnglisch
Titel2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten7454-7458
Seitenumfang5
ISBN (elektronisch)9781509066315
DOIs
PublikationsstatusVeröffentlicht - Mai 2020
Veranstaltung2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spanien
Dauer: 4 Mai 20208 Mai 2020

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Band2020-May
ISSN (Print)1520-6149

Konferenz

Konferenz2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Land/GebietSpanien
OrtBarcelona
Zeitraum4/05/208/05/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Small-Footprint Keyword Spotting on Raw Audio Data with Sinc-Convolutions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren