Slow terahertz light via resonant tunneling induced transparency in quantum well heterostructures

Petar Tzenov, Christian Jirauschek

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We present a theoretical and computational investigation of the possibility of achieving slow terahertz light by exploiting the tunneling induced transparency (TIT) effect in suitably engineered quantum well heterostructure devices. We design such a meta-material and show how TIT could lead to large values of the group refractive index, unfortunately at the cost of strong field attenuation due to decoherence. As a suitable alternative, we propose a grating, consisting of a buffer and a quantum cascade amplifier regions, arranged in such a way as to achieve slow light and simultaneously compensate for the large signal losses. Our calculations show that a binary message could be reliably transmitted through this system, with non-critical reduction of the signal to noise ratio, as we achieve a slow-down factor of more than 70.

OriginalspracheEnglisch
Titel19th International Conference and School on Quantum Electronics
UntertitelLaser Physics and Applications
Redakteure/-innenSanka Gateva, Tanja Dreischuh, Alexandros Serafetinides, Albena Daskalova
Herausgeber (Verlag)SPIE
ISBN (elektronisch)9781510609532
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung19th International Conference and School on Quantum Electronics: Laser Physics and Applications, ICSQE 2016 - Sozopol, Bulgarien
Dauer: 26 Sept. 201630 Sept. 2016

Publikationsreihe

NameProceedings of SPIE - The International Society for Optical Engineering
Band10226
ISSN (Print)0277-786X
ISSN (elektronisch)1996-756X

Konferenz

Konferenz19th International Conference and School on Quantum Electronics: Laser Physics and Applications, ICSQE 2016
Land/GebietBulgarien
OrtSozopol
Zeitraum26/09/1630/09/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Slow terahertz light via resonant tunneling induced transparency in quantum well heterostructures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren