Singular spectrum and recent results on hierarchical operators

Per von Soosten, Simone Warzel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

2 Zitate (Scopus)

Abstract

We use trace class scattering theory to exclude the possibility of absolutely continuous spectrum in a large class of self-adjoint operators with an underlying hierarchical structure and provide applications to certain random hierarchical operators and matrices. We proceed to contrast the localizing effect of the hierarchical structure in the deterministic setting with previous results and conjectures in the random setting. Furthermore, we survey stronger localization statements truly exploiting the disorder for the hierarchical Anderson model and report recent results concerning the spectral statistics of the ultrametric random matrix ensemble.

OriginalspracheEnglisch
TitelContemporary Mathematics
Herausgeber (Verlag)American Mathematical Society
Seiten215-225
Seitenumfang11
DOIs
PublikationsstatusVeröffentlicht - 2018

Publikationsreihe

NameContemporary Mathematics
Band717
ISSN (Print)0271-4132
ISSN (elektronisch)1098-3627

Fingerprint

Untersuchen Sie die Forschungsthemen von „Singular spectrum and recent results on hierarchical operators“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren