Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO 2 capture

Andrej Lotrič, Mihael Sekavčnik, Christian Kunze, Hartmut Spliethoff

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

The effectiveness of energy conversion and carbon dioxide sequestration in Integrated Gasification Combined Cycle (IGCC) is highly dependent on the syngas composition and its further processing. Water gas shift membrane reactor (WGSMR) enables a promising way of syngas-to-hydrogen conversion with favourable carbon dioxide sequestration capabilities. This paper deals with a numerical approach to the modelling of a water gas shift reaction (WGSR) in a membrane reactor which promotes a reaction process by selectively removing hydrogen from the reaction zone through the membrane, making the reaction equilibrium shifting to the product side. Modelling of the WGSR kinetics was based on Bradford mechanism which was used to develop a code within Mathematica programming language to simulate the chemical reactions. The results were implemented as initial and boundary conditions for the tubular WGSMR model designed with Aspen Plus software to analyze the broader system behaviour. On the basis of selected boundary conditions the designed base case model predicts that 89.1% CO conversion can be achieved. Calculations show that more than 70% of carbon monoxide conversion into hydrogen appears along the first 40% of reactor length scale. For isothermal conditions more than two thirds of the heat released by WGSR should be extracted from the first 20% of the reactor length. Sensitivity analysis of the WGSMR was also performed by changing the membrane's permeance and surface area.

OriginalspracheEnglisch
Seiten (von - bis)911-926
Seitenumfang16
FachzeitschriftStrojniski Vestnik/Journal of Mechanical Engineering
Jahrgang57
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 2011

Fingerprint

Untersuchen Sie die Forschungsthemen von „Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO 2 capture“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren