TY - GEN
T1 - Simulation of particle levitation due to dielectrophoresis
AU - Rochus, Véronique
AU - Hanner, Stephan
AU - Golinval, Jean Claude
AU - Rixen, Daniel
PY - 2010
Y1 - 2010
N2 - The aim of the research is to model accurately dielectrophoresis using different numerical tools and compare them to experimental results. The dielectrophoresis phenomenon consists in the creation of electrostatic forces on nano or micro particles due to a gradient of electric field. The aim of such a setup is to control the motion of micro or nano particles for MEMS applications, for instance, for bioanalysis devices[2, 5, 8, 6, 9]. To validate the numerical results, some prototypes have been fabricated at TU Delft. Using these simulations, a design of microstructure has been chosen to levitate Silica micro-particles. Experimental measurements have been performed and some characteristic behaviours of particle depending on the amplitude and the frequency of the applied voltage have been identified. The measurements are compared to the numerical simulation.
AB - The aim of the research is to model accurately dielectrophoresis using different numerical tools and compare them to experimental results. The dielectrophoresis phenomenon consists in the creation of electrostatic forces on nano or micro particles due to a gradient of electric field. The aim of such a setup is to control the motion of micro or nano particles for MEMS applications, for instance, for bioanalysis devices[2, 5, 8, 6, 9]. To validate the numerical results, some prototypes have been fabricated at TU Delft. Using these simulations, a design of microstructure has been chosen to levitate Silica micro-particles. Experimental measurements have been performed and some characteristic behaviours of particle depending on the amplitude and the frequency of the applied voltage have been identified. The measurements are compared to the numerical simulation.
UR - http://www.scopus.com/inward/record.url?scp=77953720141&partnerID=8YFLogxK
U2 - 10.1109/ESIME.2010.5464526
DO - 10.1109/ESIME.2010.5464526
M3 - Conference contribution
AN - SCOPUS:77953720141
SN - 9781424470266
T3 - 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
BT - 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
T2 - 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
Y2 - 26 April 2010 through 28 April 2010
ER -