Similarity metrics and efficient optimization for simultaneous registration

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

We address the alignment of a group of images with simultaneous registration. Therefore, we provide further insights into a recently introduced class of multivariate similarity measures referred to as accumulated pair-wise estimates (APE) and derive efficient optimization methods for it. More specifically, we show a strict mathematical deduction of APE from a maximum-likelihood framework and establish a connection to the congealing framework. This is only possible after an extension of the congealing framework with neighborhood information. Moreover, we address the increased computational complexity of simultaneous registration by deriving efficient gradient-based optimization strategies for APE: Gauß-Newton and the efficient second-order minimization (ESM). We present next to SSD, the usage of the intrinsically non-squared similarity measures NCC, CR, and MI, in this least-squares optimization framework. Finally, we evaluate the performance of the optimization strategies with respect to the similarity measures, obtaining very promising results for ESM.

OriginalspracheEnglisch
Titel2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009
Herausgeber (Verlag)IEEE Computer Society
Seiten667-674
Seitenumfang8
ISBN (Print)9781424439935
DOIs
PublikationsstatusVeröffentlicht - 2009
Veranstaltung2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009 - Miami, FL, USA/Vereinigte Staaten
Dauer: 20 Juni 200925 Juni 2009

Publikationsreihe

Name2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009

Konferenz

Konferenz2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
Land/GebietUSA/Vereinigte Staaten
OrtMiami, FL
Zeitraum20/06/0925/06/09

Fingerprint

Untersuchen Sie die Forschungsthemen von „Similarity metrics and efficient optimization for simultaneous registration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren