SimilarAPI: Mining Analogical APIs for Library Migration

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Establishing API mappings between libraries is a prerequisite step for library migration tasks. Manually establishing API mappings is tedious due to the large number of APIs to be examined, and existing methods based on supervised learning requires unavailable already-ported or functionality similar applications. Therefore, we propose an unsupervised deep learning based approach to embed both API usage semantics and API description (name and document) semantics into vector space for inferring likely analogical API mappings between libraries. We implement a proof-of-concept website SimilarAPI (https://similarapi.appspot.com) which can recommend analogical APIs for 583,501 APIs of 111 pairs of analogical Java libraries with diverse functionalities. Video: Https://youtu.be/EAwD6l24vLQ

OriginalspracheEnglisch
TitelProceedings - 2020 ACM/IEEE 42nd International Conference on Software Engineering
UntertitelCompanion, ICSE-Companion 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten37-40
Seitenumfang4
ISBN (elektronisch)9781450371223
DOIs
PublikationsstatusVeröffentlicht - Okt. 2020
Extern publiziertJa
Veranstaltung42nd ACM/IEEE International Conference on Software Engineering: Companion, ICSE-Companion 2020 - Seoul, Südkorea
Dauer: 27 Juni 202019 Juli 2020

Publikationsreihe

NameProceedings - 2020 ACM/IEEE 42nd International Conference on Software Engineering: Companion, ICSE-Companion 2020

Konferenz

Konferenz42nd ACM/IEEE International Conference on Software Engineering: Companion, ICSE-Companion 2020
Land/GebietSüdkorea
OrtSeoul
Zeitraum27/06/2019/07/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „SimilarAPI: Mining Analogical APIs for Library Migration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren