Sim-to-Real Transfer of Robotic Assembly with Visual Inputs Using CycleGAN and Force Control

Chengjie Yuan, Yunlei Shi, Qian Feng, Chunyang Chang, Michael Liu, Zhaopeng Chen, Alois Christian Knoll, Jianwei Zhang

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Recently, deep reinforcement learning (RL) has shown some impressive successes in robotic manipulation applications. However, training robots in the real world is nontrivial owing to sample efficiency and safety concerns. Sim-to-real transfer is proposed to address the aforementioned concerns but introduces a new issue called the reality gap. In this work, we introduce a sim-to-real learning framework for vision-based assembly tasks and perform training in a simulated environment by employing inputs from a single camera to address the aforementioned issues. We present a domain adaptation method based on cycle-consistent generative adversarial networks (CycleGAN) and a force control transfer approach to bridge the reality gap. We demonstrate that the proposed framework trained in a simulated environment can be successfully transferred to a real peg-in-hole setup.

OriginalspracheEnglisch
Titel2022 IEEE International Conference on Robotics and Biomimetics, ROBIO 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1426-1432
Seitenumfang7
ISBN (elektronisch)9781665481090
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE International Conference on Robotics and Biomimetics, ROBIO 2022 - Jinghong, China
Dauer: 5 Dez. 20229 Dez. 2022

Publikationsreihe

Name2022 IEEE International Conference on Robotics and Biomimetics, ROBIO 2022

Konferenz

Konferenz2022 IEEE International Conference on Robotics and Biomimetics, ROBIO 2022
Land/GebietChina
OrtJinghong
Zeitraum5/12/229/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sim-to-Real Transfer of Robotic Assembly with Visual Inputs Using CycleGAN and Force Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren