Signal Clustering with Class-Independent Segmentation

Stefano Gasperini, Magdalini Paschali, Carsten Hopke, David Wittmann, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

Radar signals have been dramatically increasing in complexity, limiting the source separation ability of traditional approaches. In this paper we propose a Deep Learning-based clustering method, which encodes concurrent signals into images, and, for the first time, tackles clustering with image segmentation. Novel loss functions are introduced to optimize a Neural Network to separate the input pulses into pure and non-fragmented clusters. Outperforming a variety of baselines, the proposed approach is capable of clustering inputs directly with a Neural Network, in an end-to-end fashion.

OriginalspracheEnglisch
Titel2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3982-3986
Seitenumfang5
ISBN (elektronisch)9781509066315
DOIs
PublikationsstatusVeröffentlicht - Mai 2020
Veranstaltung2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spanien
Dauer: 4 Mai 20208 Mai 2020

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Band2020-May
ISSN (Print)1520-6149

Konferenz

Konferenz2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Land/GebietSpanien
OrtBarcelona
Zeitraum4/05/208/05/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Signal Clustering with Class-Independent Segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren