SID-SLAM: Semi-Direct Information-Driven RGB-D SLAM

Alejandro Fontan, Riccardo Giubilato, Laura Oliva Maza, Javier Civera, Rudolph Triebel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

This work presents SID-SLAM, a complete SLAM framework for RGB-D cameras. Our main contribution is a semi-direct approach that, for the first time, combines tightly and indistinctly photometric and feature-based image measurements. Additionally, SID-SLAM uses information metrics to reduce the state size with a minimal impact in the accuracy. Our evaluation on several public datasets shows that we achieve state-of-the-art performance regarding accuracy, robustness and computational footprint in CPU real time. In order to facilitate research on semi-direct SLAM, we record the Minimal Texture dataset, composed by RGB-D sequences challenging for current baselines and in which our pipeline excels.

OriginalspracheEnglisch
Seiten (von - bis)6387-6394
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang8
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „SID-SLAM: Semi-Direct Information-Driven RGB-D SLAM“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren