SGPCR: Spherical Gaussian Point Cloud Representation and its Application to Object Registration and Retrieval

Driton Salihu, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Retrieving and aligning CAD models from databases with scanned real-world point clouds remains an important topic for 3D reconstruction. Due to zero point-to-point correspondences between the sampled CAD model and the scanned real-world object, an information-rich representation of point clouds is needed. We propose SGPCR, a novel method for representing 3D point clouds by Spherical Gaussians for efficient, stable, and rotation-equivariant representation. We also propose a rotation-invariant convolution to improve the representation quality through a trainable optimization process. In addition, we demonstrate the strengths of SGPCR-based point cloud representation using the fundamental challenge of shape retrieval and point cloud registration on point clouds with zero point-to-point correspondences. Under these conditions, our approach improves registration quality by reducing chamfer distance by up to 90% and rotation root mean square error by up to 86% compared to the state of the art. Furthermore, the proposed SGCPR is used for one-shot shape retrieval and registration and improves retrieval precision by up to 58% over comparable methods.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten572-581
Seitenumfang10
ISBN (elektronisch)9781665493468
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, USA/Vereinigte Staaten
Dauer: 3 Jan. 20237 Jan. 2023

Publikationsreihe

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Konferenz

Konferenz23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Land/GebietUSA/Vereinigte Staaten
OrtWaikoloa
Zeitraum3/01/237/01/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „SGPCR: Spherical Gaussian Point Cloud Representation and its Application to Object Registration and Retrieval“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren