SGD with shuffling: Optimal rates without component convexity and large epoch requirements

Kwangjun Ahn, Chulhee Yun, Suvrit Sra

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

32 Zitate (Scopus)

Abstract

We study without-replacement SGD for solving finite-sum optimization problems. Specifically, depending on how the indices of the finite-sum are shuffled, we consider the RANDOMSHUFFLE (shuffle at the beginning of each epoch) and SINGLESHUFFLE (shuffle only once) algorithms. First, we establish minimax optimal convergence rates of these algorithms up to poly-log factors. Notably, our analysis is general enough to cover gradient dominated nonconvex costs, and does not rely on the convexity of individual component functions unlike existing optimal convergence results. Secondly, assuming convexity of the individual components, we further sharpen the tight convergence results for RANDOMSHUFFLE by removing the drawbacks common to all prior arts: large number of epochs required for the results to hold, and extra poly-log factor gaps to the lower bound.

OriginalspracheEnglisch
FachzeitschriftAdvances in Neural Information Processing Systems
Jahrgang2020-December
PublikationsstatusVeröffentlicht - 2020
Extern publiziertJa
Veranstaltung34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Dauer: 6 Dez. 202012 Dez. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „SGD with shuffling: Optimal rates without component convexity and large epoch requirements“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren