Semidefinite Relaxations for Robust Multiview Triangulation

Linus Härenstam-Nielsen, Niclas Zeller, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We propose an approach based on convex relaxations for certifiably optimal robust multiview triangulation. To this end, we extend existing relaxation approaches to non-robust multiview triangulation by incorporating a least squares cost function. We propose two formulations, one based on epipolar constraints and one based on fractional reprojection constraints. The first is lower dimensional and remains tight under moderate noise and outlier levels, while the second is higher dimensional and therefore slower but remains tight even under extreme noise and outlier levels. We demonstrate through extensive experiments that the proposed approaches allow us to compute provably optimal re-constructions even under significant noise and a large percentage of outliers.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten749-757
Seitenumfang9
ISBN (elektronisch)9798350301298
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Kanada
Dauer: 18 Juni 202322 Juni 2023

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2023-June
ISSN (Print)1063-6919

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Land/GebietKanada
OrtVancouver
Zeitraum18/06/2322/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semidefinite Relaxations for Robust Multiview Triangulation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren