Semidefinite programming relaxations applied to determining upper bounds of C-numerical ranges

Bernd Tibken, Youping Fan, Steffen J. Glaser, Thomas Schulte-Herbrüggen

Publikation: KonferenzbeitragPapierBegutachtung

2 Zitate (Scopus)

Abstract

In this contribution the global optimal upper bounds of the C-numerical range of an arbitrary square matrix A is investigated. In general the geometry of the C-numerical range is quite complicated and can be yet only partially understood. However, quadratically constrained quadratic programs (QQPs), as an important modelling tool, are used to describe this optimization problem, where the quadratic constraints are in this case the unitary matrix condition U†U = I und its seemingly redundant unitary matrix condition UU† = I. Generally the QQPs are NP-hard and numerically intractable. However the Semidefinite Programming (SDP) Relaxations to the QQPs, based upon the Positivstellensatz, can be solved in a numerically stable way and then offer sharp approximate solutions to these optimization problems. Numerical results for some physical benchmark examples are presented which indicate that the proposed method yields at least competitive upper bounds of the C-numerical ranges in comparison with ther methods.

OriginalspracheEnglisch
Seiten2601-2606
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung2006 IEEE International Conference on Control Applications, CCA 2006 - Munich, Deutschland
Dauer: 4 Okt. 20066 Okt. 2006

Konferenz

Konferenz2006 IEEE International Conference on Control Applications, CCA 2006
Land/GebietDeutschland
OrtMunich
Zeitraum4/10/066/10/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semidefinite programming relaxations applied to determining upper bounds of C-numerical ranges“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren