Semiconducting Polymer Interfaces for Electrochemically Assisted Mercury Remediation

Riccardo Candeago, Kwiyong Kim, Haley Vapnik, Stephen Cotty, Megan Aubin, Sonja Berensmeier, Akihiro Kushima, Xiao Su

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

23 Zitate (Scopus)

Abstract

Nanostructured polymer interfaces can play a key role in addressing urgent challenges in water purification and advanced separations. Conventional technologies for mercury remediation often necessitate large energetic inputs, produce significant secondary waste, or when electrochemical, lead to strong irreversibility. Here, we propose the reversible, electrochemical capture and release of mercury, by modulating interfacial mercury deposition through a sulfur-containing, semiconducting redox polymer. Electrodeposition/stripping of mercury was carried out with a nanostructured poly(3-hexylthiophene-2,5-diyl)-carbon nanotube composite electrode, coated on titanium (P3HT-CNT/Ti). During electrochemical release, mercury was reversibly stripped in a non-acid electrolyte with 12-fold higher release kinetics compared to nonfunctionalized electrodes. In situ optical microscopy confirmed the rapid, reversible nature of the electrodeposition/stripping process with P3HT-CNT/Ti, indicating the key role of redox processes in mediating the mercury phase transition. The polymer-functionalized system exhibited high mercury removal efficiencies (>97%) in real wastewater matrices while bringing the final mercury concentrations down to <2 μg L-1. Moreover, an energy consumption analysis highlighted a 3-fold increase in efficiency with P3HT-CNT/Ti compared to titanium. Our study demonstrates the effectiveness of semiconducting redox polymers for reversible mercury deposition and points to future applications in mediating electrochemical stripping for various environmental applications.

OriginalspracheEnglisch
Seiten (von - bis)49713-49722
Seitenumfang10
FachzeitschriftACS Applied Materials and Interfaces
Jahrgang12
Ausgabenummer44
DOIs
PublikationsstatusVeröffentlicht - 4 Nov. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semiconducting Polymer Interfaces for Electrochemically Assisted Mercury Remediation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren