Semi-Supervised Deep Learning for Microcontroller Performance Screening

Nicolo Bellarmino, Riccardo Cantoro, Martin Huch, Tobias Kilian, Ulf Schlichtmann, Giovanni Squillero

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In safety-critical applications, microcontrollers must satisfy strict quality constraints and performances in terms of Fmax (the maximum operating frequency). Data extracted from on-chip ring oscillators (ROs) can model the Fmax of integrated circuits using machine learning models. Those models are suitable for the performance screening process. Acquiring data from the ROs is a fast process that leads to many unlabeled data. Contrarily, the labeling phase (i.e., acquiring Fmax) is a time-consuming and costly task, that leads to a small set of labeled data. This paper presents deep-learning-based methodologies to cope with the low number of labeled data in microcontroller performance screening. We propose a method that takes advantage of the high number of unlabeled samples in a semi-supervised learning fashion. We derive deep feature extractor models that project data into higher dimensional spaces and use the data feature embedding to face the performance prediction problem with simple linear regression. Experiments showed that the proposed models outperformed state-of-The-Art methodologies in terms of prediction error and permitted us to use a significantly smaller number of devices to be characterized, thus reducing the time needed to build ML models by a factor of six with respect to baseline approaches.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE European Test Symposium, ETS 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350336344
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung28th IEEE European Test Symposium, ETS 2023 - Venice, Italien
Dauer: 22 Mai 202326 Mai 2023

Publikationsreihe

NameProceedings of the European Test Workshop
Band2023-May
ISSN (Print)1530-1877
ISSN (elektronisch)1558-1780

Konferenz

Konferenz28th IEEE European Test Symposium, ETS 2023
Land/GebietItalien
OrtVenice
Zeitraum22/05/2326/05/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semi-Supervised Deep Learning for Microcontroller Performance Screening“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren