Semantic segmentation with small training datasets: A case study for corrosion detection on the surface of industrial objects

Dennis Haitz, Patrick Hübner, Markus Ulrich, Steven Landgraf, Boris Jutzi

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In this research, we investigate possibilities to train convolutional neural networks with a small dataset for semantic segmentation, while achieving the best possible model generalization. In particular, we want to segment corrosion on the surface of industrial objects. In order to achieve model generalization, we utilize a selection of established and advanced strategies, i.e. Self-Supervised-Learning. Besides radiometric- and geometric-based data augmentation, we focus on model complexity regarding encoder and decoder, as well as optimal pretraining. Finally, we evaluate the best performing model against a pixel-wise random forest classification. As a result, we achieve an f1-score of 0.79 for the best performing model regarding the segmentation of corrosion.

OriginalspracheEnglisch
TitelForum Bildverarbeitung
Redakteure/-innenMichael Heizmann, Thomas Langle
Herausgeber (Verlag)KIT Scientific Publishing
Seiten73-85
Seitenumfang13
ISBN (Print)9783731512370
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
VeranstaltungForum Bildverarbeitung - Image Processing Forum, 2022 - Karlsruhe, Deutschland
Dauer: 24 Nov. 202225 Nov. 2022

Publikationsreihe

NameForum Bildverarbeitung
ISSN (elektronisch)2510-7224

Konferenz

KonferenzForum Bildverarbeitung - Image Processing Forum, 2022
Land/GebietDeutschland
OrtKarlsruhe
Zeitraum24/11/2225/11/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semantic segmentation with small training datasets: A case study for corrosion detection on the surface of industrial objects“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren