Semantic categorization of outdoor scenes with uncertainty estimates using multi-class gaussian process classification

Rohan Paul, Rudolph Triebel, Daniela Rus, Paul Newman

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

22 Zitate (Scopus)

Abstract

This paper presents a novel semantic categorization method for 3D point cloud data using supervised, multiclass Gaussian Process (GP) classification. In contrast to other approaches, and particularly Support Vector Machines, which probably are the most used method for this task to date, GPs have the major advantage of providing informative uncertainty estimates about the resulting class labels. As we show in experiments, these uncertainty estimates can either be used to improve the classification by neglecting uncertain class labels or - more importantly - they can serve as an indication of the under-representation of certain classes in the training data. This means that GP classifiers are much better suited in a lifelong learning framework, where not all classes are represented initially, but instead new training data arrives during the operation of the robot.

OriginalspracheEnglisch
Titel2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
Seiten2404-2410
Seitenumfang7
DOIs
PublikationsstatusVeröffentlicht - 2012
Extern publiziertJa
Veranstaltung25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 - Vilamoura, Algarve, Portugal
Dauer: 7 Okt. 201212 Okt. 2012

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
Land/GebietPortugal
OrtVilamoura, Algarve
Zeitraum7/10/1212/10/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semantic categorization of outdoor scenes with uncertainty estimates using multi-class gaussian process classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren