Self-Supervised Steering Angle Prediction for Vehicle Control Using Visual Odometry

Qadeer Khan, Patrick Wenzel, Daniel Cremers

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

2 Zitate (Scopus)

Abstract

Vision-based learning methods for self-driving cars have primarily used supervised approaches that require a large number of labels for training. However, those labels are usually difficult and expensive to obtain. In this paper, we demonstrate how a model can be trained to control a vehicle's trajectory using camera poses estimated through visual odometry methods in an entirely self-supervised fashion. We propose a scalable framework that leverages trajectory information from several different runs using a camera setup placed at the front of a car. Experimental results on the CARLA simulator demonstrate that our proposed approach performs at par with the model trained with supervision.

OriginalspracheEnglisch
Seiten (von - bis)3781-3789
Seitenumfang9
FachzeitschriftProceedings of Machine Learning Research
Jahrgang130
PublikationsstatusVeröffentlicht - 2021
Veranstaltung24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 13 Apr. 202115 Apr. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Self-Supervised Steering Angle Prediction for Vehicle Control Using Visual Odometry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren