Segmentation of brain MRI in young children

Maria Murgasova, Leigh Dyet, David Edwards, Mary Rutherford, Joseph V. Hajnal, Daniel Rueckert

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

15 Zitate (Scopus)

Abstract

This paper describes an automatic tissue segmentation algorithm for brain MRI of young children. Existing segmentation methods developed for the adult brain do not take into account the specific tissue properties present in the brain MRI of young children. We examine the suitability of state-of-the-art methods developed for the adult brain when applied to the segmentation of the young child brain MRI. We develop a method of creation of a population-specific atlas from young children using a single manual segmentation. The method is based on non-linear propagation of the segmentation into population and subsequent affine alignment into a reference space and averaging. Using this approach we significantly improve the performance of the popular EM segmentation algorithm on brain MRI of young children.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer-Assisted Intervention, MICCAI 2006 - 9th International Conference, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten687-694
Seitenumfang8
ISBN (Print)3540447075, 9783540447078
DOIs
PublikationsstatusVeröffentlicht - 2006
Extern publiziertJa
Veranstaltung9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006 - Copenhagen, Dänemark
Dauer: 1 Okt. 20066 Okt. 2006

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band4190 LNCS - I
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006
Land/GebietDänemark
OrtCopenhagen
Zeitraum1/10/066/10/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „Segmentation of brain MRI in young children“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren