Segmentation and unsupervised part-based discovery of repetitive objects

Rudolph Triebel, Jiwon Shin, Roland Siegwart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

In this paper, we present an unsupervised technique to segment and detect objects in indoor environments. The main idea of this work is to identify object instances whenever there is evidence for at least one other occurence of an object of the same kind. In contrast to former approaches, we do not assume any given segmentation of the data, but instead estimate the segmentation and the existence of object instances concurrently. We apply graph-based clustering in feature and in geometric space to presegmented input data. Each segment is treated as a potential object part, and the inter-dependence of object labels assigned to part clusters are modeled using a Conditional Random Field (CRF) named the "parts graph". Another CRF is then applied to the scene graph to smooth the class labels using the distributions obtained from the parts graph. First results on indoor 3D laser range data are evaluated and presented.

OriginalspracheEnglisch
TitelRobotics
UntertitelScience and Systems VI
Redakteure/-innenHugh Durrant-Whyte, Yoky Matsuoka, Jose Neira
Herausgeber (Verlag)MIT Press Journals
Seiten65-72
Seitenumfang8
ISBN (Print)9780262516815
DOIs
PublikationsstatusVeröffentlicht - 2011
Extern publiziertJa
VeranstaltungInternational Conference on Robotics Science and Systems, RSS 2010 - Zaragoza, Spanien
Dauer: 27 Juni 201030 Juni 2010

Publikationsreihe

NameRobotics: Science and Systems
Band6
ISSN (elektronisch)2330-765X

Konferenz

KonferenzInternational Conference on Robotics Science and Systems, RSS 2010
Land/GebietSpanien
OrtZaragoza
Zeitraum27/06/1030/06/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Segmentation and unsupervised part-based discovery of repetitive objects“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren