Seeking Visual Discomfort: Curiosity-driven Representations for Reinforcement Learning

Elie Aljalbout, Maximilian Ulmer, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Vision-based reinforcement learning (RL) is a promising approach to solve control tasks involving images as the main observation. State-of-the-art RL algorithms still struggle in terms of sample efficiency, especially when using image observations. This has led to increased attention on integrating state representation learning (SRL) techniques into the RL pipeline. Work in this field demonstrates a substantial improvement in sample efficiency among other benefits. However, to take full advantage of this paradigm, the quality of samples used for training plays a crucial role. More importantly, the diversity of these samples could affect the sample efficiency of vision-based RL, but also its generalization capability. In this work, we present an approach to improve sample diversity for state representation learning. Our method enhances the exploration capability of RL algorithms, by taking advantage of the SRL setup. Our experiments show that our proposed approach boosts the visitation of problematic states, improves the learned state representation, and outperforms the baselines for all tested environments. These results are most apparent for environments where the baseline methods struggle. In simple environments, our method contributes to stabilizing the training, reducing the reward variance, and improving sample efficiency.

OriginalspracheEnglisch
Titel2022 IEEE International Conference on Robotics and Automation, ICRA 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3591-3597
Seitenumfang7
ISBN (elektronisch)9781728196817
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, USA/Vereinigte Staaten
Dauer: 23 Mai 202227 Mai 2022

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz39th IEEE International Conference on Robotics and Automation, ICRA 2022
Land/GebietUSA/Vereinigte Staaten
OrtPhiladelphia
Zeitraum23/05/2227/05/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Seeking Visual Discomfort: Curiosity-driven Representations for Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren