Seasonal prediction of Indian summer monsoon onset with echo state networks

Takahito Mitsui, Niklas Boers

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

Although the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for water-resource management and agricultural planning on the Indian sub-continent, the long-term predictability - especially at seasonal time scales - is little explored and remains challenging. We propose a method based on artificial neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown that the meridional tropospheric temperature gradient in the boreal winter season already contains the signals needed for predicting the ISM onset in the subsequent summer season. Our study demonstrates that machine-learning-based approaches can be simultaneously helpful for both data-driven prediction and enhancing the process understanding of climate phenomena.

OriginalspracheEnglisch
Aufsatznummer074024
FachzeitschriftEnvironmental Research Letters
Jahrgang16
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - Juli 2021
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Seasonal prediction of Indian summer monsoon onset with echo state networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren