Scheduling on power-heterogeneous processors

Susanne Albers, Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli, Richard Stotz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

We consider the problem of scheduling a set of jobs, each one specified by its release date, its deadline and its processing volume, on a set of heterogeneous speed-scalable processors, where the energyconsumption rate is processor-dependent. Our objective is to minimize the total energy consumption when both the preemption and the migration of jobs are allowed. We propose a new algorithm based on a compact linear programming formulation. Our method approaches the value of the optimal solution within any desired accuracy for a large set of continuous power functions. Furthermore, we develop a faster combinatorial algorithm based on flows for standard power functions and jobs whose density is lower bounded by a small constant. Finally, we extend and analyze the A Verage Rate (AVR) online algorithm in the heterogeneous setting.

OriginalspracheEnglisch
TitelLATIN 2016
UntertitelTheoretical Informatics - 12th Latin American Symposium, Proceedings
Redakteure/-innenGonzalo Navarro, Evangelos Kranakis, Edgar Chávez
Herausgeber (Verlag)Springer Verlag
Seiten41-54
Seitenumfang14
ISBN (Print)9783662495285
DOIs
PublikationsstatusVeröffentlicht - 2016
Veranstaltung12th Latin American Symposium on Theoretical Informatics, LATIN 2016 - Ensenada, Mexiko
Dauer: 11 Apr. 201615 Apr. 2016

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9644
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz12th Latin American Symposium on Theoretical Informatics, LATIN 2016
Land/GebietMexiko
OrtEnsenada
Zeitraum11/04/1615/04/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scheduling on power-heterogeneous processors“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren