Scheduling in the random-order model

Susanne Albers, Maximilian Janke

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

Makespan minimization on identical machines is a fundamental problem in online scheduling. The goal is to assign a sequence of jobs to m identical parallel machines so as to minimize the maximum completion time of any job. Already in the 1960s, Graham showed that Greedy is (2 − 1/m)-competitive [18]. The best deterministic online algorithm currently known achieves a competitive ratio of 1.9201 [14]. No deterministic online strategy can obtain a competitiveness smaller than 1.88 [34]. In this paper, we study online makespan minimization in the popular random-order model, where the jobs of a given input arrive as a random permutation. It is known that Greedy does not attain a competitive factor asymptotically smaller than 2 in this setting [32]. We present the first improved performance guarantees. Specifically, we develop a deterministic online algorithm that achieves a competitive ratio of 1.8478. The result relies on a new analysis approach. We identify a set of properties that a random permutation of the input jobs satisfies with high probability. Then we conduct a worst-case analysis of our algorithm, for the respective class of permutations. The analysis implies that the stated competitiveness holds not only in expectation but with high probability. Moreover, it provides mathematical evidence that job sequences leading to higher performance ratios are extremely rare, pathological inputs. We complement the results by lower bounds for the random-order model. We show that no deterministic online algorithm can achieve a competitive ratio smaller than 4/3. Moreover, no deterministic online algorithm can attain a competitiveness smaller than 3/2 with high probability.

OriginalspracheEnglisch
Titel47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
Redakteure/-innenArtur Czumaj, Anuj Dawar, Emanuela Merelli
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (elektronisch)9783959771382
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2020
Veranstaltung47th International Colloquium on Automata, Languages, and Programming, ICALP 2020 - Virtual, Online, Deutschland
Dauer: 8 Juli 202011 Juli 2020

Publikationsreihe

NameLeibniz International Proceedings in Informatics, LIPIcs
Band168
ISSN (Print)1868-8969

Konferenz

Konferenz47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
Land/GebietDeutschland
OrtVirtual, Online
Zeitraum8/07/2011/07/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scheduling in the random-order model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren