ScanRefer: 3D Object Localization in RGB-D Scans Using Natural Language

Dave Zhenyu Chen, Angel X. Chang, Matthias Nießner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

123 Zitate (Scopus)

Abstract

We introduce the task of 3D object localization in RGB-D scans using natural language descriptions. As input, we assume a point cloud of a scanned 3D scene along with a free-form description of a specified target object. To address this task, we propose ScanRefer, learning a fused descriptor from 3D object proposals and encoded sentence embeddings. This fused descriptor correlates language expressions with geometric features, enabling regression of the 3D bounding box of a target object. We also introduce the ScanRefer dataset, containing 51, 583 descriptions of 11, 046 objects from 800 ScanNet[8] scenes. ScanRefer is the first large-scale effort to perform object localization via natural language expression directly in 3D (Code: https://daveredrum.github.io/ScanRefer/).

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2020 - 16th European Conference 2020, Proceedings
Redakteure/-innenAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten202-221
Seitenumfang20
ISBN (Print)9783030585648
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung16th European Conference on Computer Vision, ECCV 2020 - Glasgow, Großbritannien/Vereinigtes Königreich
Dauer: 23 Aug. 202028 Aug. 2020

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12365 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz16th European Conference on Computer Vision, ECCV 2020
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtGlasgow
Zeitraum23/08/2028/08/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „ScanRefer: 3D Object Localization in RGB-D Scans Using Natural Language“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren