ScanNet++: A High-Fidelity Dataset of 3D Indoor Scenes

Chandan Yeshwanth, Yueh Cheng Liu, Matthias Niesner, Angela Dai

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

38 Zitate (Scopus)

Abstract

We present ScanNet++, a large-scale dataset that couples together capture of high-quality and commodity-level geometry and color of indoor scenes. Each scene is captured with a high-end laser scanner at sub-millimeter resolution, along with registered 33-megapixel images from a DSLR camera, and RGB-D streams from an iPhone. Scene reconstructions are further annotated with an open vocabulary of semantics, with label-ambiguous scenarios explicitly annotated for comprehensive semantic understanding. ScanNet++ enables a new real-world benchmark for novel view synthesis, both from high-quality RGB capture, and importantly also from commodity-level images, in addition to a new benchmark for 3D semantic scene understanding that comprehensively encapsulates diverse and ambiguous semantic labeling scenarios. Currently, ScanNet++ contains 460 scenes, 280,000 captured DSLR images, and over 3.7M iPhone RGBD frames.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten12-22
Seitenumfang11
ISBN (elektronisch)9798350307184
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, Frankreich
Dauer: 2 Okt. 20236 Okt. 2023

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Konferenz

Konferenz2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Land/GebietFrankreich
OrtParis
Zeitraum2/10/236/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „ScanNet++: A High-Fidelity Dataset of 3D Indoor Scenes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren